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A SPIN-WAVE THEORY OF ANISOTROPIC ANTIFERROMAGNETICA

By D. Ter HAAR anp M. E. LINES
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This paper is a sequel to an earlier one (ter Haar & Lines 1962 referred to as A) in which we
applied a molecular-field treatment to anisotropic antiferromagnetics. In the present paper we
apply spin-wave theory to investigate the influence of anisotropy of nearest-neighbour inter-
actions and of the occurrence of next-nearest-neighbour interactions on the stability of the types
of order found in A.

After a brief introduction, face-centred cubic antiferromagnetics are considered in the second
section. We find that there is no type of f.c.c. order which is stable for nearest-neighbour isotropic
exchange interactions only. For the case of type 1 order with all spins along the direction of the
unique cubic axis the order is stabilized by a small amount of anisotropy in the nearest-neighbour
interaction. This is the only f.c.c. order which we found to be stable for nearest-neighbour
interactions only. The influence of the more-remote-neighbour interactions is probably small for this
case. For the case of type 1 order with all spins perpendicular to the unique cubic axis, we find
that this type of order is only stable, provided interactions more remote than the nearest-neigh-
bour ones occur. As far as type 2 order is concerned, the case where the preferred direction of
order is in one of the ferromagnetically ordered planes turned out to be too complicated to be
treated, but the case where the preferred direction is perpendicular to the ferromagnetic planes
and the isotropic case can be treated. The orders in the latter cases are stable, provided the
next-nearest-neighbour interactions are not too weak. If they are too weak, type 3A order is
the stable one. Type 3A order with the spins oriented along the unique cubic axis is stable,
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2 D. ter HAAR AND M. E. LINES

provided there is a small amount of isotropic antiferromagnetic next-nearest-neighbour inter-
action present. Type 3A order with spins perpendicular to the unique cubic axis is stable only if
we include second and third nearest-neighbour interactions of sufficient magnitude.

For most of these cases we have computed the spin-wave ground-state energy and the average
value in this ground state of the total sublattice spin-component along the preferred direction; this
value should be close to its maximum for the spin-wave treatment to be reliable. We observe that for
all orders considered here there is a general rule: the order is not stable, if it is possible to single
out a plane in the structure for which the average interactions between atoms within the plane and
those outside is zero.

In §2 we discuss the body-centred tetragonal lattice. We find that type 1 order is stable, pro-
vided the isotropic next-nearest-neighbour exchange interaction is larger than the nearest-
neighbour exchange interaction. If their ratio is less than } the so-called rutile type diagonal
order—or type 2 order—is stable whenever its existence is predicted by the molecular-field theory.
In the latter case one must introduce four sets of spin-waves rather than the two sets occurring
for the other types of order considered in the present paper.

In the last section we consider antiferromagnetic resonance. We find that the resonance fre-
quency observed for MnO agrees rather better with the exchange interaction deduced from
susceptibility measurements than with the value of this interaction deduced from mixed-salt para-
magnetic-resonance measurements. For the case of MnF, we find a resonance wavelength of
about 0-95 mm as against the experimental wavelength of 1-15 mm. We finally predict resonance
frequencies of 15-0 and 19-1 cm™! for (NH,),IrCl; and K,IrCl; if they should show type 1 order
and of 10-6 and 13-5 cm~1, if the order should be type 3A.

LisT OoF syMBOLS

General

S;,» €etc. The component in the direction x of the spin at the ith lattice site

XY,z A right-handed set of axes defined such that for any particular order z is
the preferred direction of antiferromagnetic alinement

XY, Z A right-handed set of axes defined along the principal cubic (or tetragonal)
axes

A The 3 X 3 matrix which transforms the co-ordinate system X, Y, Z into the
system x, y, z

a; The matrix elements of 4

i The vector position of an “up’ spin

kk’' The vector position of a ‘down’ spin

N The number of sites in the entire lattice

N The spin-quantum number

S, The classical total spin of an atom (S, = /J{S(S-+1)})

E, The ground-state energy of the system

E, The ‘molecular field’ ground-state energy of the basic array

© A wave vector

K; Wave-vector components

abe Summation over all nearest neighbours with connexions in the directions

e labelled by a, b, and ¢

> Summation over all nearest neighbours

n.n

Sabe ¥ As above, but for next-nearest neighbours
R, naon.

[£,q]- The commutator pg-gp
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SPIN-WAVE THEORY OF ANISOTROPIC ANTIFERROMAGNETICA 3

{(S;.)toray  Thetime average value of the z component of spin in the complete j sublattice
J Isotropic nearest-neighbour exchange
K Isotropic next-nearest-neighbour exchange

For the face-centred cubic lattice

gy, Anisotropy parameters defined, such that the interaction between a pair of
nearest-neighbour spins §' and §’ is

QT+ J,) S, S 4-2(T+Tp) S, S +-2(T +J,) 8, %,

where x" is the direction of the line connecting the spins, y’ is perpendicular
to &’ in the cube face in which § and §’ are situated, and z’ is such that
x'y'z" form a right-handed orthogonal set of axes

For the body-centred tetragonal lattice and rutile anton positions

% The ratio (< 1) of the dimensions of the tetragonal unit cell
I JIg I, Anisotropy parameters defined such that the interaction between a pair of
nearest-neighbour spins §' and §” is

T+ J) Sy +2(T+Tp) S, S +2(T+T) 8,050,

where ' is the tetragonal axis, y’ is the axis parallel to the connexion
between S (or ') and its neighbour anions and z’ such that x’y'z’ form
a right-handed orthogonal set of axes

D, D', D"  Anisotropy parameters defined such that the anisotropic part of the inter-
action of a spin S with the crystalline field is '

2[DS?, + D'S2, +D"S2],

where ¥', y’, z’ are as defined for J,, J;, J,.

E Crystal-field anisotropy parameter defined by the equation £ = D" —D"

K, ,K;, K Anisotropy parameters defined such that the interaction between a pair of
next-nearest neighbour spins § and $” is

2(K+K,) S, Sl +2(K+Ky) 8,8, +2(K+K,) ...,

y y//
where x” is the direction of the line connecting the spins, y” is a direction
normal to the plane containing x” and the tetragonal axis, and z” is such
that x”, y”, z” form a right-handed orthogonal set of axes

1. INTRODUCTION

In a previous paper (ter Haar & Lines 1962; in the following referred to as A and its
equations as, for example, (A 2-6) ; we shall as far as possible use the same notation as in A)
we have applied a molecular-field treatment to the theory of anisotropic antiferromagnetics.
In the present paper we shall consider the problem from a spin-wave point of view. We shall
again use a Hamiltonian of the type (A 1-15). We do not wish to discuss the adequacy of
this Hamiltonian (see, for instance, Slater 1953 for such a discussion), but accept it as a
suitable model for antiferromagnetics, and hope that it will explain their behaviour—at

least in a semi-quantitative manner.
I-2
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4 D. Ter HAAR AND M. E. LINES

Even if the Hamiltonian (A 1-15) were the correct one, there remains the task of
solving the quantum-mechanical eigenvalue problem and the statistical problem of
evaluating the thermodynamic behaviour of the systems governed by this Hamiltonian.
A rigorous treatment has so far not been found and various approximate methods have
been evolved. Some of these are particularly suited for temperatures well above the Curie
temperature while others are particularly suited for temperatures well below the Curie
temperature. Unfortunately there does not seem a satisfactory theory for the perhaps most
interesting temperature region in the neighbourhood of the Curie temperature. Of the
high-temperature approximations the simplest one is the molecular field theory which we
used in A. The main reason for using this rather crude approximation is that one hopes
that it will describe the properties of complicated antiferromagnetic substances quali-
tatively, at least, while its relatively simple mathematics enables one actually to obtain
some results. Opechowski’s 7"~!-expansion method (1937, 1939) and Li’s adaptation (1951)
of the Bethe-Weiss method are two more-accurate high-temperature approximations.
We must mention that Li’s predictions about the occurrence or non-occurrence of anti-
ferromagnetic structures are different from the predictions obtained from the molecular
field approach. Also, the behaviour of the susceptibility above the Curie temperature is
different in the two theories—the predictions of Li’s theory being in better agreement with
actual experimental results. The Bethe-Weiss method breaks down in the low-temperature
region (Anderson 1950) as it predicts a second, lower critical temperature below which the
order disappears again. Several authors have modified either the 1/7" approach (Kubo,
Obata & Ohno 1951, 1952) or the Bethe—Weiss approach (Oguchi & Obata 1953 ; Naka-
mura 1953 ; Brown & Luttinger 1955), but without very great success in the low-temperature
region.

The most successful low-temperature approximation is the spin-wave approach (Hulthén
1936; Anderson 1952; Ziman 19524, b, 1953; van Kranendonk & Van Vleck 1958, and
many others). The method consists essentially in expressing the Hamiltonian for the system
in terms of the deviation of the spins from a basic, antiparallel-ordered arrangement. Mar-
shall’s work (1955) suggests that the antiferromagnetic ground state does not show long-
range order, but he has also shown that the ordered state lies very close to the ground state
and so far the spin-wave theory has been—perhaps unaccountably—rather successful
when applied to antiferromagnetics. We shall therefore apply it to some of the anti-
ferromagnetic arrangements studied in A.

It is well known that the basic, ordered states of an antiferromagnetic such as the ones
given by the molecular-field method and discussed in A are not eigenstates of the Hamil-
tonian. For three-dimensional antiferromagnetics in which the basic antiferromagnetic
ordered state may be divided into two interlocking ferromagnetic sublattices which are
such that all the nearest neighbours of a spin on one sublattice are on the other sublattice,
Anderson (1952) using a spin-wave theory has shown that the ground state is not too far
removed from the basic molecular-field state. However, if we are dealing with a face-
centred cubic (f.c.c.) lattice, one cannot find two such sublattices, and the work of both
Li (1951) and Ziman (1953) seems to indicate that—at least in the case when the only
interactions present are isotropic nearest-neighbour exchange interactions—there is no
low-lying ordered state. As the f.c.c. case is such an important one empirically, it is of some
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SPIN-WAVE THEORY OF ANISOTROPIC ANTIFERROMAGNETICA 5

interest to investigate how second-nearest-neighbour interactions and the anisotropy of
nearest-neighbour interactions can affect the stability of the basic, ordered molecular
field states.

Our programme will be as follows. We take as the basic array on which to base the
spin-wave treatment the molecular-field orders found in A. We then express the Hamil-
tonianin terms of the deviations of the spins from the basic ordered antiparallel arrangement.
This Hamiltonian is then treated by the usual spin-wave methods to give us the ground-
state energy and also the magnitude of the spin on the sublattices in the spin-wave (that is,
the low temperature) approximation. If the deviation of sublattice spins from the basic
array is small, the method is consistent and we shall assume that the results are good
approximations and that the order is therefore a stable one. Most calculations have to be
done numerically and the dependence of the various quantities of interest to us are plotted
as functions of the available parameters—mainly the anisotropy parameters.

In § 2 we discuss f.c.c. lattices, considering in § 2 (@) type 1 order, in subsection 2 (&) type 2
order, and in §2(¢) type 3A order. In §3 we discuss body-centred tetragonal (b.c.t.)
lattices, considering in subsection 3 () type 1 order, and in§ 3 (b) type 2 (the so-called rutile
type diagonal) order. Finally, we discuss in § 4 antiferromagnetic resonance.

2. THE FACE-CENTRED CUBIC LATTICE

We saw in A that, depending on the relative magnitude of the various exchange para-
meters, in a f.c.c. magnetic lattice various types of order may occur; we also noted that, in
fact, several of these types of order have been observed experimentally. As we shall find the
mathematics of the spin-wave treatment to be much more complicated than for the mole-
cular-field theory, we shall only consider nearest-neighbour and second-nearest-neighbour
interactions. In that case, type 4 order will not occur, and we are left with types 1, 2, and 3.
Experimentally, MnO, CoO, NiO, and aMnS show type 2 order with spins ordered some-
where in the ferromagnetic planes; FeO type 2 order with spins alined at right angles to
the ferromagnetic planes; MnS, and fMnS type 3 A order; and MnTe, type 1 order. We
shall therefore consider these three types of order in the present section.

2(a) Type 1 order in the f.c.c. lattice

We saw in A that type 1 order may occur with all spins alined either parallel to the unique
cubic axis or at right angles to this axis, depending on whether the anisotropy parameter
J, (see (A 2-2)) is negative or positive. We shall treat these two cases separately.

2a (i) Type 1 order; all spins parallel to the Z axis
We first consider the case where the nearest-neighbour exchange energy, which is given
by the equation (see (A 2-1))
V= 20,8185 + 20581, Sy +2J55),.5 (21)
is such that, provided we choose our #" axis in the direction of the line connecting the spins,
our y' axis at right angles to the x" axis in the cube face in which the two spins are situated,

and the z’ axis so as to form a right-handed set of Cartesian co-ordinates with the x" and
y' axes (see figure A 2), and provided we write (see (A 2-2))

=T dy Jy=J+dy Jy=J+d, Jdyd, =0, (2-2)

z'
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6 : D. Ter HAAR AND M. E. LINES

J,, is negative. In that case ordering is along the unique cubic axis, which we shall call
the Z axis.

More generally we may choose a set of axes x, y, z such that the preferred direction of
ordering is z. Although in the present section z and Z are the same, we shall find it con-
venient, for use in later sections, to treat the more general case at this stage.

Consider now figure 1, and consider the spins labelled 8d and 8a. Let X’ denote the
x, Y, z system of co-ordinates and 2’ the X, ¥, Z system, and let g;; be the components of the

| Z
1d 3d 1d 47
29 ta= _ddgsl Ja= 2dy/
1de 2a= 3dg 4a= 1dT J ; ¥ 1
1c 1be 3c 3be 1c (7 Y Y ¥
Z.C I 2pe 4.(: 4| 4be 2.0 ' \ Y
®
6d /1 o= Bl 7= | 17} oIy oy }
5d1/) [Ga= _7al/| [Ba= 5d4 (6d -r
[ ] @ @ v (] ¥ Y
5l Sbe | [zl  7be | [5c T 0 , -
6| V| Bbe (0| Bbe ol : 0 ,
0 | o5p V| o7 ' } ) }
1) 3d) td} bl o'y
24y Taw (4l Bam (20l b o
1d'/ Za= 3dg/ 4da= 1dg” 1 P N (
/ { f
\ / Y
X X
Ficure 1. The f.c.c. lattice. Ficure 2. Type 1 order in the f.c.c. lattice.

transformation matrix 4 which transforms X into 2’ (see equation (A 2-3)). We then get
for the exchange interaction between the 8d and 8a spins the expression (A 2-5).
V8d,8a = Ji[(a;;+ap,) S+ (a9 +ag) Sly+ (a3, +asy) Sy.]

X [(ay;+a12) Syt (agy + ) Say 4 (ag1 +a35) 5]

+ Tyl (ar; —ayg) Siet (a9 — ag5) Sy + (a3 —a35) S1.]

X [(ayy— a15) Soy+ (g1 — aas) Sy + (a3, —a35) S5 ]

+2J5[a,38,+ ags Sly +a3381.] [a1385,+ sy SZy +a338,.1, (2-3)
where S, and S, refer to the 8d and 8a spins. One can write similar expressions for the
exchange interactions of the 8d spin with its other nearest-neighbours and for the exchange

interactions with the next-nearest neighbours. If we neglect all more remote neighbours,
we can write the Hamiltonian of the total lattice in the form

H= SVt 3V, (24)

n.n.n.

where the first sum is over all nearest-neighbour pairs and the second one over all next-
nearest-neighbour pairs.
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SPIN-WAVE THEORY OF ANISOTROPIC ANTIFERROMAGNETICA 7

We now make the basic spin-wave-theory assumption that the actual state of the lattice is
notfar removed from the type 1 order given in figure 2. We shall denote all ‘up’ spins by asuffix
Jory"and all ‘down’ spins by £ or £". The transformation matrix 4 of (A 2-3) can now for use
in the present section be taken to be the unit matrix. In writing down the total Hamiltonian
we must bear in mind that we are dealing with anisotropic interactions, in general, and the
various terms in the sum over the nearest neighbours will be different depending on the
direction of the line connecting the two spins. The same would be true for the sum over the
next-nearest neighbours, if we introduced the anisotropy alsoin that case. Weshall, however,
not explicitly take the next-nearest-neighbour anisotropy into account,* and assume that
we have an exchange interaction such as (2-1) with all exchange parameters equal to one
another (= K). We introduce the notation >* with the superscript ¢ distinguishing between

n.n,

the six different directions of nearest-neighbour connexions. The superscripts 1, 2, 3, 4, 5,
and 6 correspond respectively to the directions (0,1,1) (4b, 6b); (0,1, —1) (2b, 8b);
(1,0,1) (4c,7¢); (1,0, —1) (3¢, 8c); (1,1,0) (8a, 5a); and (1, —1, 0) (6a, 7a), where
the second brackets indicate the nearest neighbours (see figure 1). Whenever a summation
sign carries more than one superscript, summation over all the directions which are in-
dicated is intended: '35 is thus equivalent to X!+ >34- 35, and so on. A summation

n.n. n.n. n.n. n.n.

sign without a superscript indicates summation over all nearest (or next-nearest)
neighbours.
The total Hamiltonian is now of the form

H = S12(8;.8,)+ S0 J((S;. 8;) + (S 8)]+ 3 KI(S;-8;)+ (S, Sp)]
31 O () + 3 O () + IO, (jB)
3 Dy (K) 4 3P (@ () + Oy ()4 3 [0 (i) + @2y ()], (2:5)

where (I);cg/z(.]k) = Joc(Sjyj:sz) (Sky:tSkz) + Jﬂ(Sjy¥sz) (Sky¥Skz) -+ 2J'ijxSkx‘ (26)

We now introduce the semi-classical approximation as well as the basic spin-wave-
theory assumption, and write for any spin

S%+8y 52 = 8%, (2-7)

where S, = /{S(§+1)} is the classical total spin of an atom with spin-quantum number S.
Moreover, we write

S = V(=S S}) =

Jz

_SE+S,
C SC b
SB-SE, =8

Skz =—Sc—’_ 28

In writing down (2-8) we have used the fact that in the basic array all §;, are equal to S,
and all S, equal to —S; and also the fact that we may assume all S, and S, to be small
compared to S..

* Details of some of the consequences of introducing next-nearest-neighbour anisotropy can be found in
M. E. Lines’s Oxford D.Phil. Thesis.
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8 D. Ter HAAR AND M. E. LINES
Substituting (2-8) into (2-5) we get in the same approximation

H = A SZA- A5 (5457, Sk 4 S%y) + 4185815+ i)
+/12(Sijj’y+SkySk’y) +‘ﬂ1ijSkx+ﬂZSijky
V(805 85y St SaeStry - Sky Shr) V(S8 +Sjy Sk (2:9)
where A, A,, A;, Ay, 4y, fis, v, and v, are operators which are given by the equations

Ay=(—-3J+5) 2+2K3,

n.n. n.n.n.

By = (3J—-3J) 2K %,

n.n.n,

/11 == /12 = (J*%JY)nthG_f—Kngn’

iy = 2(J+J,) 312+ (20— J,) 3%,
py = (2J—J,) 324 2(J+J) 33,
v, = % om[ﬂ%?”*gle]: Jaﬂ - Joc—*‘]/?"

V2:0.

Y

(2-10)

We have in (2-9) included the term with v, to have as general a Hamiltonian as possible.
In fact, we shall see later on that a Hamiltonian of the form (2-9) occurs for all types of
order in the f.c.c. case.

We now introduce two sets of spin waves, one pair for the j sublattice and one pair for
the £ sublattice: ) )

5, — (%‘)z s cenQ, S, = (%S‘)z ge-i(nﬁj)PK,
(2:11)

&S)%‘

S - g’§ %z —i(K.k)R S — i(K.k)S
kx N “ € ©) k. N ze 3

®

where N is the total number of spins in the lattice, and where k runs over £ N values in the
first Brillouin zone of the f.c.c. reciprocal lattice.
From (2-11) it follows that

2 \* s 2\b
P N —1i(x.§) Q' Y x.j) €
@~ () Seiers, P, (3s) S eHDs,,
o i o rd (212)

_ i T) — — .k
R~ (3s) T RS, S, (%) Seiens,,

The S, and S, satisfy the usual commutation rules for spin components and it follows
from (2-12) that
2i i ]
P.—P.Q,. =0 298;,=10,.,
Q\c K K QK NS mc; Jz KK } (2'13)
RKSK'—SK'RK # igl(l(”
and other commutators vanishing. We have used in deriving (2-13) the relation

S S;, = 4NS.
Jj
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SPIN-WAVE THEORY OF ANISOTROPIC ANTIFERROMAGNETICA 9
Substituting (2-11) into (2-9) we get
H = aSt+ 3 3A(Qu Q-+ RR_) + 3o PP +5.5.)
TN QB PS4 30 QP AL Q= RS —S R )+, (PR —QS5_)}  (2:14)
where the «, £, f,, 71, 72 01, and §, are given by the equations

@ = N(—4J48J,+6K),
/))1 — /))2 :/)J — S[(QJ_‘]y) 2566i("’])+2K z ei("'l)—l—SJ—lGJy——lQK],

y, = S[Q(J+Jy) 312 ei(x.l),Jr_(QJ_Jﬂ 334 giteD],
Y, = S[(QJ_Jy) S12eit by (2] 4 2J)',) 334 gite.] (2-15)
8, = SJap’[ 35 gilk-D . 36 pilk-D]

8y = 0.

The term with §, has again been included in order to have as general a Hamiltonian as
possible. In (2-15) 1is the vector connecting the nearest (or next-nearest) neighbours over
which is summed.

We note that the Hamiltonian of (2-14) is a quadratic expression in the P,, @, R, and S,
that is, we are working in the ‘small vibrations’ approximation. This means that one can
diagonalize (2-14) after which it will be a sum of harmonic oscillator terms. If the eigen-
values of the small vibrations are E,, the eigenvalues of the Hamiltonian will be X (n;+ ) E,.
There are for each (positive) x eight degrees of freedom corresponding to P, P_, @, @_,,
R,R_,S,and S__ and we are thus led to an eight by eight determinant for the secular
equation. This determinant can be reduced to the square of the following four by four
determinant

1E+0; ) b V1 ‘
9, iE—0, 71 A s
—f V2 1E—0; )
V2 —f 9, 1E+0;

(2-16)

|
We then get for E? the result
E? = 03— 0%+ fo— 7172 [(Bom1 —172) 244017, —B205) (0171—Fh 52)]%, (2-17)

leading to two different positive E-values, £, and E, ; we have given the E,; a subscript «
to indicate that they depend on x as f8}, ff,, 71, 72, and 0, are functions of k (see (2-15)). The
eigenvalues of (2-14) are thus given by the equation

Emnz = aSg_’_ g [(nlx_l_%) EIK —}v (n2n+%—) EQK]’ (2.] 8)

and the ground-state energy E, is given by
E, = aSt+4 2 (B A+ Ey)- (2-19)

In (2-18) the quantum numbers 7, and 7, are called the spin-wave numbers.

2 Vor. 255. A.
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10 D. Ter HAAR AND M. E. LINES

To simplify our calculations we shall for the time being assume J, to be equal to J;so that
we can put 0; = 0, = 0, and (2-17) and (2-19) reduce to

= HBr+71) (Po—72)}  Ege=H(hr—71) (Bot72)}s (2-20)
E = uSZ+3 2[\/{ (Br+71) (By—7r2)}+{(Br—71) (Bot72)3]- (2-21)

We note that the allowed k values are given by the equation
2m
=T [7, by +nyby+n5bs], (2-22)

where we have assumed the crystal to be a cube of dimensions L measured in lattice spacings
along the basis vectors, where the 7; are integers: —4L < n; < $L, and where the b, are
vectors reciprocal to the basis vectors a, which are givenbya, =j+k,a, = k+i,a; =i+j
with i, j, and Kk vectors of equal length along the X, ¥, Z axes.

If we write

I (223
we have
S12eited — 9 cosk, + 208 (Ky—Ks), |
‘2'34 el®D = 2cosky+2cos (kg —kK;),
.2‘56 el®D = 2 cos k53 +2 cos (k; —Ky), P
. Z eltD = 2cos (—k, +Ky+K3) + 2008 (K] —Ky+K3) + 2 €08 (K +Ky—Ks).

Using (2-24) we can express f,, f,, 7, and 7, in terms of the 7;, and we can write (2:21) in

the o S AN LA ) (o)} + 1) (Bat 721D, (2-25)

where the pointed brackets indicate an average over the n—each 7, running from —3%L
to 3L.

A case of particular interest is that of nearest-neighbour interactions only, including
anisotropy. Ziman (1952a,b, 1953) has shown that if J, = J; = J, = 0, the f.c.c. will not
support type 3A order. We shall find that under these conditions the f.c.c. lattice will not
support any antiferromagnetic order.

We have computed numerically E, for the case where K= 0 for various values of
|J,|/J between 0 and 04, on the Oxford University Mercury computer. The results are
shown in figure 3. For comparison we have also plotted £, for the case § —co, which corre-
sponds to the molecular-field ground state.

It is instructive to write E, in terms of the molecular-field (or classical spin) ground

E
sate Lo E,— Ey(1+4p)S); (2-26)

the energy scale is fixed by putting the energy of the ferromagnetic ground state equal to
12NJS? The coefficient p as function of |J,|/J is shown in figure 4.

To see whether or not these results are likely to be good approximations to the real
ground-state energies, it is necessary to examine whether our assumptions about S, and S,


http://rsta.royalsocietypublishing.org/

s |
PN

/

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

SPIN-WAVE THEORY OF ANISOTROPIC ANTIFERROMAGNETICA 11

being much smaller than S, are valid. For the case where §; = J, =0, the Hamiltonian
(2-14) can by canonical transformations be reduced to the form

H = aS2+ 3 Z [(B1+71) Gl (Bo—72) P+ (Br—71) B+ (Ba+72) 135 (2-27)

where p,., ¢1 Poe and g, satisfy the commutation relations
(%5 l’j.c']— 19, 31]) (G5 qj'.c']— = [ Pres ﬁjx']— = 0. (2-28)
As the potential and kinetic energies of a harmonic oscillator have the same average

values we Can WIte (g (hi+0) = (B0 (ha—1a) = }

229
(@D (Br—12) = 13 (Bat72) = o (2:29)

0-2
% typelorder(LZ)
)
= P
@ type3order (1Y)
‘g 0-1- (
2
=¥ typelorder (12)
l | | |
0 0-2 0-4
Ficure 3 | T 1T Ficure 4

Ficure 3. The ground state energy E, plotted for the case of f.c.c. type 1 order with all spins along
the unique cubic axis as function of the anisotropy parameter for various values of the spin-
quantum number S.

Ficure 4. The quantity p from (2-26) as function of the anisotropy parameter for f c.c. type 1 and
type 3A order.

and for the ground state we have (compare (2:19))
cl = %Elx’ 62 = %EZK' (\2.30)
Combining (2-29), (2~30) and (2-20) we have for the ground state

2{gt = 2<le> ( 1#3) 2{¢3> = 2@29 A/(ﬂﬁh) (2:31)

Consider now the j sublattice. We have

+52,
(S3)om =3, %NSC )3 l;gz

J

NS~ % 3 (Q,Q- PP

CcC K

I

s
NS~ 2 (Gl Bt Pt D3t QreaeT1 ) (2-32)
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12 D. Ter HAAR AND M. E. LINES
As (5},) total 1s DOt a constant of motion, we must take the time average of (2-32). As

(0192 = {Pre b2 = 0,

SN /¢ €
1 - 1k 2k .
we get <(sz)t0tal> - 2NSC 16SC E1K+E2K 5 (2 33)
where we have used (2:31), (2-20), and where
€10 = BrHBotVi—Yes €0 = Br+Fo—71 T 7a (2-34)

If we consider a state characterized by spin-wave numbers #,, instead of the ground
state, we get instead of (2:33)
SN

€ €
(St = B, g () =+ (et 1) 325, (235)

To get the average value of (S),), in a lattice at temperature 7, we must take an
ensemble average (indicated by ( );) of (2-35) which means that we must replace the 7,
by their statistical average which is given by the equation

S ep{ A D E
Ot Dr =5 xp (Bl + D B

= j coth (3/E,), (2-36)
where (k£ being Boltzmann’s constant)
; f=1/kT. (2-37)
We get thus from (2-35)
S € €
S totaldr = s NS, — o i< coth 1pE,, ++2< coth }fE,, |. 2-38
<( J )t t I>T 2 SSC§ Eln 2/3 1 E2|c ?ﬁ 2 ( )

We can now use (2-38) to investigate how the total sublattice spin depends on the tem-
perature and on the exchange interaction parameters. We must mention that the numerical
evaluation of the sums (or averages) occurring in (2-38) are more complicated than of
those occurring in (2-25) as the summands are far less smooth in the former case. This means
that our results for the sublattice spins are therefore probably less accurate than those for
E,. This is particularly the case in the regions where the ground state differs considerably
from the basic molecular-field state, as in those regions the summand becomes very large
for certain values. We must also bear in mind that all results of a semi-classical spin-wave
treatment should be valid to order §~!—or perhaps even to order (zS)~!, where z is the net
number of antiparallel spins with large exchange interactions with a particular spin; for
instance, z = 4 for type 1 order—as the semi-classical approximations are valid to this order
(Anderson 1952). The case §' = } is thus a bad one; (2-33) gives, for instance, the impossible
result {(S;,) o > NS for this case.

Once again we consider the case J,; = J,—J; = 0, K = 0. In the isotropic case when
J, =0, we see that FE, = E, = 0 along several lines in x-space, for example, «, = 0,
Ky = k3 and K, = 0, k3 = k. The expression for ((S},) 1) does not diverge at zero-tem-
perature, but diverges at any non-zero temperature. This can be seen from (2-38). Near the
lines where E), and E,_vanish the sum over k is approximately equal to

2¢, 2¢, :l
— £ ], 2-39
3| g s (2:89)
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SPIN-WAVE THEORY OF ANISOTROPIC ANTIFERROMAGNETICA 13

The integral replacing this sum diverges logarithmically, if J, = 0. If J, % 0, however,
E, and E,_are zero only at isolated points, and (2-38) converges for non-vanishing tem-
peratures. For the cases where there is no divergence we may replace (2-38) by (2-33) at
very low temperatures. We have computed the right-hand side of (2-33) as a function of
J,|/J in the limit of § large—putting S, = S+ §—and put the results in the form

<(sz) Dtotal = ’%‘N(S’"D)a (2'40)

where D is a numerical constant. We show in figure 5 the left-hand side of (2-40) as function
of |J,|/J. We note that D decreases with increasing |J,|/J, and we conclude that for small,
but non-vanishing temperature the f.c.c. antiferromagnetic with isotropic nearest-neigh-
bour interactions only does not have a stable type 1 order, but that this type of order is

NS
ING-041)

1N(s-02)

<(S jz) total>

AIN(S-09))

! | !
0 0-2 0-4
|1

Figure 5. The average spin component as function of |J, |/J for f.c.c. type 1
order with all spins along the unique cubic axis.

stabilized by even a very small amount of (J, negative) type dipolar interaction. Itis inter-
esting to note that for the simple cubic lattice with isotropic nearest-neighbour interactions
only, D = 0-078 (Anderson 1952). A similar value of D for type 1 order in a f.c.c. lattice
would correspond to |J,|/J ~ 0-125.

In an actual antiferromagnetic with type 1 order, however, the second-neighbour
isotropic exchange parameter K is likely to be of the same order of magnitude as J,,. A ferro-
magnetic K will increase the stability, but an antiferromagnetic K will reduce the value of
{(S;.)1ota1) for the type of order considered in the present subsection. In fact, in the latter
case the order vanishes if K > 3J,. However, the effect of third-neighbour interactions is
largely to counterbalance the effect of K, so that we probably gain little by attempting to
include K without also introducing even more remote interactions. As we expect J > K,
the nearest-neighbour-only results are probably quite reasonable approximations.

2a(il) Type 1 order; all spins in the XY plane

We now consider the case where J, > 0. In A we found that in this case the spins were
alined somewhere in the XY plane, say in the (a,, a,, 0) direction, but we were not able to
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14 D. Ter HAAR AND M. E. LINES

obtain any further information about ¢, and a,. We shall see presently that the spin-wave
treatment will provide us with some more information about 4, and a,. We can proceed
as in § 24 (i) and are led to a Hamiltonian of the form (2-14) where now

o« = N(—4J—4J,+6K), 1
fr=S[2(J+ Jy)n%56 eV 42K 3 eiP8J4-8J,—12K],

n.n.n.

[y = S[(QJ_JY*QaIaZJaﬁ) 35 ei(n.1)+(QJ_JerQalaQJaﬁ) 36 elte.D
+2K 3 el*V4-8/4-8J,—12K],

n.n.n.

¥ = S[(2J—J7)'§11234ei("")], (2-41)
v, = S[(2J —a} J, 243 Jy)n%‘?ei("")%— (2J+2a1J,—a3 Jy)néﬂei("")],

31 — 0’
52 = Sjaﬁ[”al 21 ei(x.l)+al 32 ei(x.l)+a2 23 e““-”—aZ 24 ei(tc.l)].
n.n. n.n. n.n. n.n.

The co-ordinate system 2* was chosen such that the transformation matrix 4 of (A 2-3)
was of the form

0 0 1]
A=|a, —a O (2-42)
a 4y, 0|

Having obtained the Hamiltonian, we can proceed as before. The ground-state energy
E, is now a function of ¢; and a, and we can minimize £, with respect to these parameters.

If we put
a, =costl, a,=-sind, (2-43)

and put J,; = 0, we find that £, is a minimum for § = 0 or 47, corresponding to the pre-
ferred direction of ordering being along one of the cubic axes in the XY plane. This result
is likely to be approximately true even if J,; == 0, at least as long as J, is not small compared
to |J,4|- This conclusion is based upon the fact that those regions of x space for which £,
and £, vanish or are nearly zero in the isotropic case—that is, along or near the lines
Ky = 0, Ky = K3, Ky = 0, K} = K3, K} = T, Ky—Kg =7, and K, = 7, k3—k; = 7—will provide
the main anisotropy contributions to £,. In those regions /,, contributes little or nothing
to E, so that we expect J, to affect E, to a much greater extent than J,,.

We shall now put J,; =0, K =0, a; =1, and a, = 0O—assuming thus that the basic
array is ordered along the X axis. We can then evaluate £, as a function of J,/J. The results
are given in figures 4 and 6. In figure 4 we have given the quantity p defined by (2-26) and
in figure 6 E, itself for various values of S.

As far as {(5},)ora1) 18 concerned, however, we find that it diverges, whatever the value
of J,/J. This is a consequence of the fact that f,—y, vanishes along the line x, = 0, k; = 4
while ff,+7, vanishes along the line «k, = 7, k3—&; =7 when K = J,, =0, ¢, = 1, a, - 0.
One can show that the divergence does not disappear when J, 4 J;, but that it can be
removed by an isotropic ferromagnetic second-neighbour interaction or by antiferro-
magnetic second- and third-neighbour exchange parameters K and L (see (A2-12)),
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SPIN-WAVE THEORY OF ANISOTROPIC ANTIFERROMAGNETICA 15

provided 4L > K. This type of order has been found experimentally in MnTe, (Corliss,
Elliott & Hastings 1959).

The question arises how much reliance can be placed upon our results about the ground-
state energy, as we have just seen that the order, for which the energy was calculated, is not
stable. However, a similar situation occurs for the spin-wave theory of the linear chain
(Anderson 1952); in that case it has been shown that the ground-state energy derived by
the spin-wave method is, nevertheless, a fair approximation to the exact ground-state
energy which is known in this case (Bethe 1931). One can only suppose that the basic
assumption that the sublattice spin is large and nearly equal to $ is fulfilled temporarily
over sufficiently large regions of the lattice so that the energy parameter is not badly
approximated. It is thus possible that the same is true for our lattices and that the ground-
state energies which we have calculated are therefore worth recording.

E, (units of JNS?)

0 0-2 04
[T
Ficure 6. The ground-state energy E, plotted for the case of f.c.c. type 1 order with all spins at

right angles to the unique cubic axis as function of the anisotropy parameter for various values
of the spin-quantum number S.

Itis important to note that the result concerning the preferred direction of ordering which
was derived from the ground-state energy-expression still holds when we include the more
remote interactions to stabilize the order. This is a consequence of the fact that the order
can be stabilized by including isotropic interactions only. This result has, however, only
been proved for the case where the anisotropy is entirely due to nearest-neighbour exchange.
It must be mentioned that if the anisotropy is mainly due to dipole-dipole interactions, we
may get considerable anisotropy from more remote neighbours, as the dipole-dipole inter-
actions only decrease as r~3.

2 (b) Type 2 order in the f.c.c. lattice

We shall consider as the basic arrangement that of figure 7. This ordered arrangement
consists of ferromagnetic [1, 1, —1] planes, with adjacent planes antiferromagnetically
alined. Again there are two cases: if J,; > 0, the preferred direction is the (1,1, —1)
direction; if J,; < 0, the spins are alined somewhere in the [1, 1, —1] plane, say, in the
(ay, ay, a; +ay) direction. We shall consider these two cases separately.
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16 D. tTer HAAR AND M. E. LINES

¥

¥ |yl A

]
Ficure 7. Type 2 order in the f.c.c. lattice.

2 (b) (i) Type 2 order; all spins in the (1, 1, —1) direction
The analysis proceeds as before and we get again a Hamiltonian of the form (2-14)
where now
o= N(—4J,,—6K),
B = S[8J,5+ 12K+ (2J +35J,+%J,) nEn“‘ eith (2J+§—Jﬁ+%Jy)n§5 el

Py = S[8J,5-+ 12K + (2T +4J,) S8 e 4-2( J 4 J,) Toeit=],

7 =S[2T+4T,+3T) ,12,:124 ei("'l)‘HQJ‘F%Ja*F%Jy) nzns, STRINE 2Kn.§n,ei(ml)]’ -
72 =S[(2T+1J) 324 it 2(J+Jp) Siel 1 2K 3 eite:h],

n.n.n.

8 = ﬁé (Jy—3J,+2J) [ leich 33 cite-D],

n.n.

s . .
Oy = g (Ju—BJy 2, [ S2eitd— Steic],

7

The transformation matrix in this case was chosen to be given by the equation

o 2 |
A= /3 —J3 0 (245)
N IV

In this case one cannot put &, = d, = 0 without discarding all anisotropy-parameters,
and E, must be obtained from the more general equations (2-17) and (2-19). For the
isotropic case one finds that the order considered is stable, if 2K > J, but not, if 2K < J.
If 2K = J, one can, however, find values of the anisotropy parameters such that the order
is stable. If 2K < J the spin-wave theory breaks down dramatically for the type of order
considered and the energy becomes imaginary. We must note that the spin-wave approxi-
mations become poor in the immediate vicinity of 2K = J because our basic assumption
that the true ground state is near the basic ordered state considered becomes progressively
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SPIN-WAVE THEORY OF ANISOTROPIC ANTIFERROMAGNETICA 17

less valid when we approach 2K = J. To see this we have computed the values of the sub-
lattice spins for the isotropic case. The results are given in figure 8. As K/J — oo the f.c.c.
type 2 order becomes equivalent to four independent simple cubic lattices. This provides
us with a limit for the average spin component as K/J —> o0, and we have used Anderson’s

INS—
1N (s-01)- !
type3Aorder : type 2 order

~ [
g I
~3 V(5-09 !
v I
< |
|

|

AN(s-03); !

|

|

|

! i u ! |
0 03 0-6 09 1-2 1:5
KJJ

Ficure 8. The average spin component as function of K/J for the isotropic
case for f.c.c. type 2 and type 3A order.

-3
-5
&
=
b\
Gt
° -7
§ type 3Aorder
{.L}M
-0
-11 | | | | |
0 0-3 0-6 09 1-2 1-5

K|J |

Ficure 9. The isotropic ground-state energy for f.c.c. type 2 and type 3A
order as function of K/J for different values of S.

data (1952) for the simple cubic lattice. The limit for {(S;,) a1 8. 5N(S—0-078). In figures
9 and 10 we give the ground-state energy for the isotropic case and the parameter p of (2:26).
In figure 10 we have again indicated the limit of p as K/J — 00 this limit is 0-097. We note
that in figures 8, 9, and 10 we have also given the behaviour of the various parameters for
2K < J when type 3 A order is the stable one, as we shall see presently.

3 Vor. 255. A.
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18 D. tTer HAAR AND M. E. LINES

2 (b) (ii) Type 2 order; all spins in the [1, 1, —1] plane
In this case we choose for 4 the matrix

i 3-* 3t _3-
A=\ a3 ay aytay |, (2-46)
¥ ay ay  a;+ay l

05/~
[
|
0-41— [
type3Aorder : type 2 order
0-3— :
|
P |
02 |
01 limit for K/\J-> o0
| | | | |
0 0-3 0-6 0-9 12 I'5

K|J
Ficure 10. The quantity p from (2:26) for the isotropic case as function
of K/J for f.c.c. type 2 and type 3A order.

and we find for the coefficients of (2-14)
- N( ﬁH6K))
ﬂl = S[ 4J ﬁ_|_12K—} (2J 2J ) zlssemc 1)]

By =S[—4J,5+12K+ (2 +3J,—2a3a,J,5+ 3a3a4Jy)n§6 eit-D
+(2J+ a3 J, +4d}J, +4asa,J,) zl eite-D
+(2J +ai J, +4a3J,+4aza,J, )Z%“W

— S[(2J 245 aite.) | QK ite.D

71 [(2J+% /3) Z e+ nnEne 1, | (2:47)

72 = S[(2J+ 3, +2a3a4Jaﬂ—|—3a3a4 ) 25 iV (2J + a3 J, +4ai Jy+4aza, Jp)
X Zzel(" V(2 +a3J, +4a§Jﬂ+4a3a4Jﬂ) Z‘*el"‘ V42K 3 eiteD],

n.n.n.

0, = J3 Jyﬂ [a, zlel(x Dia, zsel(x D_ (gy+a,) 36eitD],

8y = 25 Sl S2eNt 0, T68 (0,1 ap) S

Ty = dy—dpy Ty =J,—J,.
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To find a; and a, we should now minimize the energy with respect to these variables.
This we have not been able to do, since the Hamiltonian is of the general form (2-17) rather
than (2:20). The coefficients (2-47) will, however, be used in connexion with the discussion
of antiferromagnetic resonance in § 4. In the limit of isotropic exchange only, the equations
(2-47) and (2-44) are, of course, identical.

2 (c) Type 3 A order in the f.c.c. lattice

The basic arrangement is that given in figure 11 with the Y axis as the unique cubic
axis. Again there are two cases depending on whether J, is positive or negative. In the
first case the preferred direction of the spins is parallel to the Y axis, and in the second case
somewhere in the XZ plane. We consider these two cases separately.

2¢ (1) Type 34 order; all spins parallel to the Y axis

In this case we have for 4 the matrix

0 0 1
A=|1 0 0 (2-48)
01 0

and for the coefficients in the Hamiltonian the expressions

— N(—4J—4J,+2K), 1
,5’1 SL(J—3J,) SV (J+J,) IReleD 2K Fireit 48] +8J, —4K],
po = SI(T+.7,) S12e0 (S~} J,) Sl l>+21<nnzlsel<w V487 4-8J, —4K],
7,1 — S[( J % y) 212 el(lc l)+(J+J) 256 el(K l)_I_ (2J J) Z34el(n l)_|_2Kn§j el(x l)] (2.49)
vy = S[(J+J. ) leel(x by (2] — J) 23461(:« D (J 1J) zSﬁel(x by oK zzel(x by,

5, =0,
8 — SJ ﬁ[ 23 el(K N V. 24 el(lc l)]

J

where 31, 32 and Y° refer to sums over only those next-nearest neighbours with con-

n.n.n. n.n.n. n.n.n.
necting vectors in the (1, 0, 0), the (0,1, 0), and the (0, 0, 1) directions, respectively.

One can show that the situation is now similar to the one in subsection 24 (ii) : (i) for the
isotropic case the ground state shows order, but an infinitesimal amount of thermal energy
is sufficient to make the order unstable; (ii) the inclusion of nearest-neighbour anisotropy
does not stabilize this order (the sum (2-39) diverges along k3 = 7, K, —k, = ) ; (iii) a small
amount of next-nearest-neighbour (antiferromagnetic) isotropic exchange does, however,
stabilize the order. Using the same arguments as in subsection 2a (ii) we feel that the
ground-state energy computed for nearest-neighbour interactions only may well give a
fair approximation to the actual ground-state energy for this case. We have computed E,
as a function of J, /J for various values of S, assuming J,; = 0. The results are given in
figures 12 and 4.

3-2
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20 D. Ter HAAR AND M. E. LINES

2¢ (1) Type 3 A order; all spins in the XZ plane

The molecular-field theory was not able to predict whether or not this type of order was
a ‘proper’ one, that is, whether the spins in adjacent XZ planes (between which there was
in the molecular-field theory no interaction) were alined in the same direction. However,

AZ

-4

o
=

<

[

o
\?/

&5

7 ! | 1 |
0 01 02 0-3 04

| Tyl

Ficure 12. The ground-state energy E, plotted for the f.c.c. type 3A order with all spins alined
parallel to the unique cubic axis as function of the anisotropy parameter for various values of S.

if one uses spin-wave theory one can prove that the ground-state energy of this type of order
is a minimum if the angle between the preferred directions in adjacent XZ planes vanishes
(M. E. Lines, unpublished Oxford D.Phil. Thesis). The actual direction of the ordering
can also be found by minimizing the ground-state energy. The result of the minimization
is that if J,;, = 0, the preferred direction is along either the X axis or the Z axis. We can
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thus choose the transformation matrix 4 to be the unit matrix and we get for the coefficients
in the Hamiltonian the expression (we have put J,; = 0)

a = N[—4J+2J,+2K], )
By =S[(J+J,) 2112 ei(“'l)+(J“%Jy)nznssei(“'n"'zl( S13eiteh 8 4 —4K],

n.n.n.

ﬁz — S[(‘]*%Jy) 21256 ei("'l)—i—QK 213 ei("~‘)+8J—4J7—4K],

n.n. n.n.n. (2.50)
y, = S[( J+Jy) zlzei‘“")+(2J~Jy) 234ei(n.1)_{_(J___%Jy) Zseei(x.l)+2K 22 ei(x.l)],
yy = S[(J—%Jy) 31256 ei“-‘)—|—2(k/+Jy) S34eied { QK F2eiteD],

n.n.n.

We are not able to evaluate the ground-state energy for the case of nearest-neighbour
interactions only, since it is imaginary except in the limit J, = 0. The energy is real, how-
ever, and the order stabilized, if we include suitable isotropic second- and third-neighbour
interactions. For the isotropic case the order is stable with just antiferromagnetic nearest-
and next-nearest-neighbour interactions provided 2K < J. For larger K/J ratios type 2
order takes over.

We have calculated the values of {(S,) 1), £y, and p for the isotropic case and for various
values of K/J; the results of these calculations are plotted in figures 8, 9, and 10. We may
mention here that at 2K = J the molecular-field theory gives the same value of £, for type 2
and type 3 A order, while spin-wave theory gives a lower E, value for type 2 order.

From the molecular-field theory of A we saw that the net interaction between neigh-
bouring XZ planes for the type 3 A order with nearest-neighbour exchange only is zero.
The order then consists of isolated plane quadratic layers of spins. When we examine the
type 1 order with nearest-neighbour exchange only, we find that there exists an interaction
proportional to 12J, (ai; —a},) $* between adjacent YZ planes and another, proportional to
12J, (a};—af,) $% between adjacent XZ planes in the basic array. For the case of a negative
J,s afs =1, 4;; = a;, = 0, and both these interactions are equal to 12J,52. For the case of
positive J,, a;3 =0, and we can separate the structure into isolated plane quadratic
layers, if either a;; or a,, is zero. The latter condition is just the one which is obtained
by minimizing the spin-wave ground-state energy. The spin-wave analysis shows that for
the case of nearest-neighbour exchange only, the types 3 A order are not stable, the type 1
order (J, negative) is stable, and the type 1 order (J, positive) is unstable.

From this evidence it would seem likely that a necessary (though perhaps not sufficient)
condition for an order to be stable is that there should not be any plane within the basic
array which has vanishing net interactions with the rest of the lattice.

A further instructive example of the importance of the ‘out of plane’ interactions for
stabilizing the order is the case of the isotropic type 3 A order with nearest-neighbour and
next-nearest-neighbour interactions. In the limit K = 0, the XZ planes are isolated. Any
spin in the lattice has four parallel next-nearest neighbours, and only two antiparallel ones.
In spite of the larger number of parallel next-nearest neighbours, the spin-wave theory
shows that we require an antiferromagnetic interaction to stabilize the order. We note
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22 D. Ter HAAR AND M. E. LINES

that the two antiparallel next-nearest neighbours are just the ones which are not contained
in the same XZ plane as the central spin. The four parallel next-nearest neighbours are in
this XZ plane and do not appear therefore to be effective in stabilizing the order.

3. THE BODY-CENTRED TETRAGONAL LATTICE

Of the types of order found in A for a b.c.t. magnetic lattice, the most commonly found
experimentally is the type 1 order (see figure 13). Type 1 order with the Z axis (which we
take along the tetragonal axis) as the preferred direction is found for MnF,, FeF,, and CoF,,.

Z VA

X X

Ficure 13. Type 1 orderin theb.c.t. lattice. ~ F1GURE 14. Type 2 orderin the b.c.t. lattice.

VA
1a, 351 1%
2a,/ 4a./ Za./
la 3%/ 1a. /
i 1be 3pe
5al 92b 7al ®4b 5al
6al /| 8al ~ 6al /| o
5al 7a./. 5al / ¥
5b® 7he
1a|_®6b 3a] ®8b 1a}
as dal/ 2al /
tal / 3al lal/

Ficure 15. The b.c.t. lattice.

This is a type of order which can be separated into two interlocking simple tetragonal ferro-
magnetic sublattices and can easily be treated by spin-wave methods. Type 2 order (see
figure 14) with the a and & sublattices being both antiferromagnetically ordered with a
preferred direction perpendicular to the Z axis, but with mutually perpendicular preferred
directions has been suggested for MnO, (butsee Yoshimori 1959) and is of particular interest
since it does not have a unique preferred direction. This type of ordering we called in A
the rutile type diagonal ordering. This can also be treated by spin-wave methods, but instead
of two sets of spin-waves, we must introduce four sets. In figure 15 we have given the sub-
lattices of the b.c.t. lattice.
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3 (a) Type 1 order in the b.c.t. lattice

We shall include in our considerations the nearest- and next-nearest-neighbour exchange
interactions, and assume to begin with that they are anisotropic. We shall also include the
anisotropy due to the crystalline field (see equation (A 7-12)). We shall use the expressions
for the exchange energies obtained in A, dropping, however, the terms with L,, Ls, and L,
in (A7-4). The derivation of the Hamiltonian is straightforward but tedious and we shall
not give all details. The next-nearest neighbour pairs are here split into four groups corre-
sponding to the following four directions for the connexions between the neighbours:
1: (1,1, —w); 2: (1,1,w); 3: (1, —1, —w); 4: (1, —1, w), where w = ¢y/a, is the ratio of
the dimensions of the unit cell in the Z and X directions. If we designate again all ‘up’
spins by the suffix j and all ‘down’ spins by the suffix £, we get again for the Hamiltonian
an equation of the form (2-9) where the various operators are now given by the expression
Ay =2D 3 +2(J+J,) 3 — (2K + 20K, P2+ 8K, Q2w?) 3 )

Ay ——3DS—(J+J,) 3+ (K+wK,P?+4K,Q?) 3,
== (J—3J) 3,

=y = (2K—|—2K“P2—|—Kﬁ—|—2K7Q2) 2

n.n.n.

(3:1)

V= 0,
vy = (2K, P*—K;+2K,Q%) [ 21— 3%],

n.n.n. n.n.n. /

where Y indicates a sum over all spins in the lattice, where P and @ are given by the equa-

n

tions (seé A (6-3)) 1 w

Jered T Jar )
and where J,, J;, J,, K,, K;, and K, are the anisotropy of the nearest- and next-nearest-
neighbour exchange interactions (see A, § 7).

We now introduce the spin-waves as in § 2; the only difference is that ¥ now runs over
1N values in the first Brillouin zone of the b.c.t. reciprocal lattice. The analysis proceeds
as before, and we are led to a Hamiltonian of the form (2-14) with the coefficients given by
the expressions

o — N(2J+2J,+2D—8K—8uw?K, P?— 32K, Q*w™?), )
pr= b= =S[(2]—T,) 3 P — 4] —4J,— 6D+ 16K+ 160°K, P>+ 64K, Q).

(3-2)

=7, =7 =S52K+2K,P*+K;+2K,Q2) 3 e, (3:3)
0, =0, 0,=5S2K,P—K;+2K, Q%) [ngtlf elte:D ——ngj‘* elteD],
For the E;, we find
E\ = J{(B+8)" =y By = J(F—09) =77 (3-4)

and for the ground-state energy E,
Ey = aSi+ 3 NWAB+8)2 =y +V{(F—0) =73 (3:5)
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24 D. ter HAAR AND M. E. LINES

As this type of order requires a considerable next-nearest-neighbour exchange, it would
not be a good approximation to put d, = 0 in this case. However, if we do not do this the
evaluation of the total sublattice spin becomes too cumbersome, and we have therefore
assumed isotropic interaction for our actual calculations so that we can again use equations
(2-33) and (2-38).

01251
& 0-1-
2]
=
N
Gy
8 0-075}=
g P
& 0-05
I l I | I 1 1 | L N
0 02 0-4 0-6 08 10 0 02 04 0-6 08 10
JIK
Ficure 16. The ground-state energy E, Ficure 17. The quantity p from (2-286)
plotted for the isotropic b.c.t. type 1 as function of J/K for the isotropic
order as function of J/K for various b.c.t. type 1 order.
values of S.
NS
3 1N(S-0-05)—
@'%
N
1N(s-01)
J | l [

0 02 04 06 08 1-0
JIK
Ficure 18. The average spin component as function of J/K for the
isotropic b.c.t. type 1 order.

Aslong as J < K, we find that the ground state is ordered at non-vanishing temperatures
even for the case of isotropic exchange interactions only. If J > 2K, type 2 orderisstable, but
none of the types of order found in A is stable if K < J < 2K. Yoshimori (1959) has, how-
ever, found a screw-type order where each XY plane has its spins ferromagnetically alined
perpendicularly to the Z axis and where the spin directions form a spiral along the Z axis,
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the pitch of which depends upon the ratio J/K. Yoshimori investigated this type of order
by both molecular-field and spin-wave methods. It is stable just in the range K < J < 2K.
The reason why we did not find it in A is that it has a periodicity which is greater than two
unit cell lengths in the Z direction, and those types of order were explicitly excluded from
our considerations.

Assuming isotropic exchange interactions we have evaluated E,, p, and {(S;,)¢ota1) fOr
various values of the ratio J/K between 0 and 1. The results are shown in figures 16, 17,
and 18.

3(b) Type 2 order in the b.c.t. lattice

We saw in A that the basic arrangement of figure 14 shows a rutile diagonal spin pattern
provided D > J,,or D < J,,but 3 |D—J,| <|J;—J,—E|. Weshall assumethat J, —J, > E;
in that case, the spins will be pointing towards their neighbouring anions in the XY plane,
aswesaw in A. The spins on the asublattice will thus point in the (1, 1, 0) or the (—1, —1, 0)
direction, while the spins on the 4 sublattice will point in the (1, —1, 0) or the (—1, 1, 0)
direction. We shall label those four different types of spins by suffices j, &, r and s, respec-
tively. The transformation matrix 4 is here chosen to be given by the equation

L =10
A::/é 1 1 o0 |, (3-6)
0 0 J2

which means that in the basic array the j, & spins are alined along the y axis, and the 7, s
spins along the x axis.
We have the following approximate equations for our spins

S24+8% ]
Sjy = Se=*55 7
. Sl%x_l_SI%z
Sk == ‘SC—F‘”*'?SZ“*,
S2 _l_SZ > (3'7)
S g Py rz
rx c QSC 2
Sgy+ 8%
Sy = —S.+- oS,

We now introduce four sets of spin waves

S, = A/(f*.]g) ge«x.j) Qu S, = A/(§N§) g i P

Sy, = A/(%SV) ge—iw.k)Rm S, = _A/(%S) g eiteB) g -
S, A/(i_g) g D QL S — A/(4_]5) g e-iten pr - (
Sy = A/(éjg) §e~i<x.s>R;d S, — _/(%) S el 57

K

(3-8)

I

where the sums over k are over its allowed LN values.

4 VoL. 255. A.
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26 D. TerR HAAR AND M. E. LINES
The Hamiltonian is now of the form

H=aSt+ 3 [34(Q Q-+ RR_A+PPLASS )

F3o(P P+ 8 S A QuQlet+ RRL) +71(QR— LS
+72(QR—~P.S,) +6(Q Pt R PL—~ QS —RS,)
+0(QQL A QR AR QARR.) +py(PP.—BS — S PAS55°], (39)
where « = N(—2J—2J;+2D"), 1
B = S(4D+-4J+-4J,—4D'),
By = S(4D"+4J +4J,—4D'),
71— S(2J+2J,) 3 e,

Yo = S(2J+2J) 3 ¢, (3:10)
¢ = S(K+w?K,P*+4K, sz“2)n ngnei(""),

pl — SJQ (QK‘y QZw—l __wKaPZ) [ zl ei(lc.l)_ 22 ei(x.l)],

,02 — S'\/Q (2K7 sz—l _wK“PZ) [ 23 ei(K.l)_ 24 Ci(K'I)].

As we expect the important anisotropy affects to result from the nearest-neighbour inter-
actions and the crystalline field, we shall put K, = K; = K, = 0 so that p, = p, = 0. This
simplifies our Hamiltonian, and we can now diagonalize it by the following canonical
transformation:

Q. = 30[(Q, A P; A+ Qs  J2H+1Qy _ 1Py _ +iQ, _ /2],
R, = 30[Q), 4Py = Q- 2410y (+1P;  —10Q; /2],
P = %o[P, . —Q; AP, _ J2+iP  —iQ; +iP, /2],
Se=30[P — Q3 — Py V2HiP _ —iQ; _ —iP, /2],
Qe =40[—P .~ Qs+ Q1 V2—-1P _ —iQ; +iQ) _. /2],
R, = %o[P, _ +Qy _ +P; _ J2+iP  +iQ, +iQ] /2],
P, =130[Q; P} 4P| _ J2+iQ, ~iP} +iP] /2],
Se=30[—Q «+ Py AP /210y _A+iP; _ +iP] _ /2], )
where o = etrif /2, (3-12)

' (3-11)

Substituting (3-11) into (3-9) we get the Hamiltonian in the form of a sum of harmonic
oscillator terms

H = “S%Jr.z: [Q3(341+3y1+6) + Pi(3Ba—5y2) +3QE(Bo+7,) +3PE(BL — 7))
+3Q5%(B1—71) +EP5(fo+72) +3Q2(Ba—7,) + 3P (fr+y—26)]. (3:13)

From (3-13) we get for the energy levels of our system

E=aSet 2 [(met3) HABi+71+26) (Bo—v2)} + (R t3) AP +72) (Bi—71)}
+ (e +3) V{Br—71) Bat72) 3+ (o +%) J(Ba—72) (Br+7: —2¢)}], (3:14)
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and for the ground-state energy

Ey = aSZ+ 5N (AP +71+26) (By—72)} + 2B +72) (Bi—71)}
V(B +71—26) (B—72)})-  (315)
To see whether the order is a stable one, we must calculate the value of the total sub-
lattice spin upon one of the four sublattices, for which we shall choose the j sublattice. Once

again we must take the average value of this quantity and we find (compare the derivation
of (2-33))

((Sjy) otal) = %NSC—% 2 [{P1) Q1) +2¢Ph) +2( Q5 +<(Po) +(Q:0)],  (3-16)

or, using the Hamiltonian (3-13),

(b = 1N~y S[JPT0%) 1 [(p 1)

RN RN R

The rutile-type diagonal order will be stable—at least for low temperatures—as long as
the denominators occurring inside the radicals in (3:17) do not vanish along any line in
x space. As long as 3(D—J,)+(J;,—E) >0, J;—J,—E >0 and J > 2K this condition
is satisfied. These are just the conditions that the basic array chosen should be the one
preferred by the molecular-field theory. This means that as long as the basic arrangement
is stable according to the molecular-field theory, this order will be stable in the spin-wave
approximation as well.

4. ANTIFERROMAGNETIC RESONANCE

The values of the energies E;, for k = 0 give us the low temperature resonance frequencies
in zero external magnetic field. We are therefore now able to find the antiferromagnetic
resonance frequencies as functions of the isotropic and anisotropic exchange parameters.
We note that as « — 0 in all cases which we have considered in the previous sections §, — 0
and J, — 0 and the resonance frequencies w; and w, are thus for very low temperatures
given by the simple equations (compare (2:20))

fiwy = H(Br— 7’1) (Bot72)}  hwy = J(B1+71) (Bo—72)}- (4:1)

We shall calculate w; and w, for the few cases where we have available data about the
exchange parameters.

We first consider MnO which shows f.c.c. type 2 order with the preferred direction of
alinement in a [1, 1, 1] plane. Keffer, Sievers & Tinkham (1961) have recently observed
at low temperatures a resonance at a wavelength of about 364 u. From (2-47) and (4°1)
we find for v,

hwy = S H{—12J,5(24J +24K—4J,;)}  fiw, = 0. (4-2)
(These results are unchanged, if we include next-nearest-neighbour anisotropy.)

Coles, Orton & Owen (1960) have performed paramagnetic resonance experiments on
Mn pairs in MgO and obtained reliable values for the anisotropy of the nearest- and next-
nearest-neighbour interactions in the mixed salt. They conclude that the anisotropy is

4~-2
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mainly due to dipole-dipole interactions although there is another contribution which makes
Js = J,. They also find that J and K are about equal and their value in temperature units
is about 14 °K. As there is a small difference in lattice parameters between MgO and MnO
we adjusted the anisotropy parameters to allow for this, assuming an inverse-cube depend-
ence upon spacing. We left the value of J as a parameter to be obtained from (4-2), putting
J = K, taking J,,; from the data of Coles ¢t al. and v, from the resonance data. This leads
us to a value of about 4-3 °K. This value agrees rather better with the value of 56 °K
obtained from susceptibility measurements which differs by more than a factor 2 from the
mixed-salt data. We must emphasize that our calculation only gives an order of magnitude
as we have neglected anisotropy contributions from more remote dipole-dipole interactions
as well as isotropic exchange interactions from more remote neighbours. If we include
more-remote-neighbour dipole-dipole terms we find a value of J and K of about 5-5 °K.

The result w, = 0 should be taken to mean that there will be another resonance arising
from anisotropy which cannot be expressed in the general form (2-1). If our assumption
that the main anisotropy can be expressed in the general form (2-1) is approximately correct,
this second zero-field resonance will take place at a frequency which is much smaller than
;. Keffer & O’Sullivan (1957) predicted a resonance at a frequency of about 0-1w),.

We next consider MnF, which shows b.c.t. type 1 order. Johnson & Nethercot (1959)
found a resonance at 1-15 mm. The anisotropy in MnF, is largely dipole with a smaller
crystal field contribution (Keffer 1952). We shall use Tinkham’s crystal field parameters
(1956). From (3-3) and (4-1) we get

ﬁwlmﬁwzﬁSJ{[ 6(D+J,) 4+

5 (2K, + K )]

[321( 6D—6J, 45> + (2K, uiK )]} (4-3)
As the main anisotropy is due to dipole-dipole interactions, one should include the effect
of more distant neighbours. We can easily include third-nearest neighbours by replacing
J, in (4:3) by J,—L, where we have taken the third-nearest neighbour anisotropy inter-
action to be of the form 2L,S,5,—L,S,S,—L,S,S,, if the connexion between the spins
S and S’ is in the x direction. From (4-3) we then get a resonance wavelength of about
0-95 mm, using a value for K of about 2°K which follows from susceptibility data. This is
quite satisfactory agreement with the experimental resonance wavelength. If in equations
(4-2) and (4-3) we consider the inter-spin anisotropy to be entirely dipole-dipole, then our
expressions reduce to those previously considered by Keffer (1952) and Keffer & O’Sullivan
(1957) except that they include dipole terms out to infinity, whereas our expressions include
only a few of the nearer-neighbour terms.

We shall finally consider K,IrCl; and (NH,),IrCl;. These are of interest as they possess
a very large nearest-neighbour anisotropy which must be mainly due to superexchange
pseudo-dipole effects (Griffiths, Owen, Park & Partridge 1959). Paramagnetic resonance
experiments indicate that the interactions between nearest neighbours are much larger
than those which exist between more distant neighbours. It appears thus that we should
be able to treat these salts theoretically to a fair approximation by considering nearest
neighbours only.
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At the moment the types of order which these salts exhibit are not yet known. If nearest-
neighbour exchange is dominant, however, we should expect (see A) that the order in
both cases must be either f.c.c. type 1 or type 3A. Coles (unpublished Oxford D.Phil.
Thesis; compare Owen 1959) has found that J, is positive in both cases so that the type 1
order will have the preferred direction at right angles to the unique cubic axis and the
preferred direction for the type 3 A order will be along the unique cubic axis.

For the type 1 order we find from (2-41) and (41)

ho) = § /{24,327 +8J,)}, i =0, (4-4)
while for the type 3 A order we and from (2-49) and (4-1)
A = @D = 8, /{12J, (32 + 8K +8J,)}. (4-5)

We see that for the type 1 order there will again be a resonance which is due solely to that
part of the anisotropy which is not caused by an interaction of the form (2-1). As that part
of the anisotropy is expected to be small, this would mean a low resonance frequency, prob-
ably at centimetre or near-centimetre wavelengths.

If our assumption, that we can get a very good approximation to both the total isotropic
and anisotropic exchange interactions by considering nearest neighbours only, is valid
we may estimate the other possible resonance frequencies for the two salts, using the
exchange parameters given by Griffiths et al. (1959). We find for (NH,),IrCl

o =150cm™!, B =10-6cm™I, (4-6)

and for K,IrCl, o =191cm™!, G =135cm™L. (47)
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